Benha University	Final Term Exam	
Faculty of Engineering- Shoubra	Date: May 17, 2015	
Eng. Mathematics \& Physics Department	Course: Mathematics 1-B	
Preparatory Year		Duration: 3 hours

- The Exam consists of one page Answer All Questions ${ }^{-}$No. of questions: $4 \quad$ Total Mark: 100

Question 1

(a)If $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 0 & 2\end{array}\right]$. Show that $A^{\prime} . A$ is symmetric matrix and find $\left|A^{\prime} . A\right|$.
(b)If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$. (i)Find the eigenvalues and eigenvectors of A.
(ii) Write Hamilton equation and find A^{-1}.
(iii)Find the eigenvalues of $f(A)=\sqrt{A^{2}+A}$ and $f(A)=2^{A}$
(c) If $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 0 & 2\end{array}\right]$, $B=\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 0 & 2\end{array}\right]$. Find, if possible, $A+B, A . B, A . B$.

Question 2

(a)Using the binomial theorem, expand : $\frac{1}{\sqrt{x+9}}$
(b) Solve the linear system: $3 \mathrm{x}+\mathrm{y}-\mathrm{z}=2, \quad 2 \mathrm{x}-\mathrm{y}=1, \quad \mathrm{x}+2 \mathrm{y}-\mathrm{z}=6$.
(c) Find S, S_{20} from each series:
$\begin{array}{ll}\text { (i) } \sum_{r=1}^{\mathrm{n}}(\mathrm{r}+1)\left(2+\mathrm{r}^{2}\right) & \text { (ii) } \sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{3}{\mathrm{r}^{2}+\mathrm{r}}\end{array}$
(d)Using the mathematical induction, prove that:
(i) $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$
(ii) $\mathrm{n}^{3}+2 \mathrm{n}$ is divisible by 3

Question 3

(a)Transform the equation $x^{2}-6 x y+9 y^{2}+4 x+8 y+15=0$ to new axes through $(-2,1)$.
(b)A point moves so that its distance from the x-axisis half of its distance from the point $(2,3)$. Find the equation of its locus.
(c) Find the value of λ such that the equation $2 x^{2}-3 x y-2 y^{2}-8 x+6 y+\lambda=0$ represents a pair of lines then fined the angle between them.
(d)Find the equation of the ellipse whose foci $(\pm 4,0)$ and its eccentricity is $1 / 3$.

Question 4

(a)Find the equation of the tangent to the circle $x^{2}+y^{2}=13$ at the point $(2,3)$.
(b)Find the equation of the parabola whose Focus is $(1,2)$ and directrix is $x+y-2=0$.
(c)Find the eccentricity, foci coordinates, directrix for the ellipse $4 x^{2}+9 y^{2}=144$.
(d)Find the equation of the tangent to hyperbola $4 x^{2}-9 y^{2}=36$ which parallels to the line $\mathrm{y}=2 \mathrm{x}+3$.

Answer

Question 1

(a) $A^{\prime} . A=\left[\begin{array}{ll}1 & 2 \\ 3 & 0 \\ 1 & 2\end{array}\right]\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 0 & 2\end{array}\right]=\left[\begin{array}{lll}5 & 3 & 5 \\ 3 & 9 & 3 \\ 5 & 3 & 5\end{array}\right]$. We see that $A^{\prime} . A$ is symmetric.
(5 Marks)
(b)(i) $|A-\lambda I|=\left|\begin{array}{cc}1-\lambda & 2 \\ 3 & 2-\lambda\end{array}\right|=(1-\lambda)(2-\lambda)-6=\lambda^{2}-3 \lambda-4=0$

Then, the eigenvalues are: $\lambda_{1}=4, \quad \lambda_{2}=-1$.
From the equation, $\left[\begin{array}{cc}1-\lambda & 2 \\ 3 & 2-\lambda\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=0$

For: $\lambda_{1}=3, \quad\left[\begin{array}{cc}-3 & 2 \\ 3 & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=0$
Then $-3 x+2 y=0, \quad 3 x-2 y=0$
Then $3 \mathrm{x}=2 \mathrm{y}=$ any number except 0
Put $y=3$, we get $x=2$ and the corresponding eigenvector is: $X_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

For : $\quad \lambda_{2}=-1, \quad\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=0$
Then $\quad 2 x+2 y=0, \quad 2 x+2 y=0$
Then $y=-x=$ any number except 0
Put $\mathrm{x}=1$, we get $\mathrm{y}=-1$ and the corresponding eigenvector is: $X_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
(6 Marks)
(b)(ii)The Hamilton equation is: $\mathrm{A}^{2}-3 \mathrm{~A}-4 \mathrm{I}=0$

Since $|A|=-4$. Then inverse A exists. Multiply the Hamilton equations by A^{-1}.
Then $A-3 I-4 A^{-1}=0$. Then $A^{-1}=\frac{1}{4}(A-3 I)=\frac{1}{4}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\right)=\frac{1}{4}\left[\begin{array}{cc}-2 & 2 \\ 3 & -1\end{array}\right]$
(5 Marks)
(b)(iii)The eigenvalues of $f(A)=\sqrt{A^{2}+A}$ are $f(4)=\sqrt{20}, f(-1)=\sqrt{0}$.

The eigenvalues of $f(A)=2^{A}$ are $f(4)=2^{4}=16, f(-1)=2^{-1}=\frac{1}{2}$.
(4 Marks)
(c) $A+B=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 0 & 2\end{array}\right]+\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 0 & 2\end{array}\right]=\left[\begin{array}{lll}2 & 1 & 4 \\ 3 & 0 & 4\end{array}\right]$
A.B does not exist. A. $\mathrm{B}^{`}=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 0 & 2\end{array}\right] \cdot\left[\begin{array}{cc}1 & 1 \\ -2 & 0 \\ 3 & 2\end{array}\right]=\left[\begin{array}{cc}-2 & 3 \\ 8 & 6\end{array}\right]$

Question 2

(a) $\frac{1}{\sqrt{x+9}}=\frac{1}{3}\left(1+\frac{x}{9}\right)^{-\frac{1}{2}}=\frac{1}{3}\left(1-\frac{1}{18} x+\frac{1}{4.27} x^{2}+\cdots\right),\left|\frac{x}{9}\right|<1$
(4 Marks)
(b) $G=\left[\begin{array}{ccc:c}1 & 2 & -1 & 6 \\ 3 & 1 & -1 & 2 \\ 2 & -1 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc:c}1 & 2 & -1 & 6 \\ 0 & -5 & 2 & -16 \\ 0 & -5 & 2 & -11\end{array}\right]=\left[\begin{array}{ccc:c}1 & 2 & -1 & 6 \\ 0 & -5 & 2 & -16 \\ 0 & 0 & 0 & 4\end{array}\right]$

We see that rank A is 2 but rank G is 3 . Then, there is no solution.
(5 Marks)
(c)(i)Since $u_{r}=(r+1)\left(2+r^{2}\right)=r^{3}+r^{2}+2 r+2$

Then $S_{n}=\frac{1}{4} \mathrm{n}^{2}(\mathrm{n}+1)^{2}+\frac{1}{6} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)+2 \cdot \frac{1}{2} \mathrm{n}(\mathrm{n}+1)+2 \mathrm{n}$
Then $S=\infty$

$$
S_{20}=(100)(21)^{2}+\frac{1}{6}(20)(21)(41)+(20)(21)+40=47430
$$

(4 Marks)
(c)(ii) Since $u_{r}=\frac{3}{\mathrm{r}^{2}+\mathrm{r}}=\frac{3}{\mathrm{r}}-\frac{3}{\mathrm{r}+1}$. Then $S_{n}=\frac{3}{1}-\frac{3}{\mathrm{n}+1}$.

Then $S=3$ and $S_{20}=3-\frac{3}{21}=\frac{60}{21}$
(4 Marks)
(d)(i)Prove that: $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$
(1)At $\mathrm{n}=1$, the left hand side (L.H.S) of this relation is 1 and the right hand side (R.H.S) of this relation is 1 . Then this relation is true at $\mathrm{n}=1$.
(2)Assume that this relation is true at $\mathrm{n}=\mathrm{k}$.

This means that $1+2+3+\cdots+\mathrm{k}=\frac{1}{2} \mathrm{k}(\mathrm{k}+1)$
(3)We shall prove that this relation is true at $\mathrm{n}=\mathrm{k}+1$.

Or prove that, $1+2+3+\cdots+(k+1)=\frac{1}{2}(k+1)(k+2)$
From step 2, add $\mathrm{k}+1$ to both sides, we get
$1+2+3+\cdots+k+(k+1)=\frac{1}{2} k(k+1)+(k+1)=\frac{1}{2}(k+)(k+2)$
Then this relation is true for all n .
(d)(ii) $n^{3}+2 n$ is divisible by 3

We want to prove that $\frac{\mathrm{n}^{3}+2 \mathrm{n}}{3}$ is integer number.
(1)At $\mathrm{n}=1, \frac{1+2}{3}=1$ which is integer number. Then this relation is true at $\mathrm{n}=1$.
(2)Assume that this relation is true at $\mathrm{n}=\mathrm{k}$.

This means that $\frac{\mathrm{k}^{3}+2 \mathrm{k}}{3}$ integer number.
(3) We shall prove that this relation is true at $n=k+1$.

Or prove that, $\frac{(\mathrm{k}+1)^{3}+2(\mathrm{k}+1)}{3}$ is integer number.
Since $(k+1)^{3}+2(k+1)=k^{3}+3 k^{2}+3 k+1+2 k+2$

$$
=\mathrm{k}^{3}+2 \mathrm{k}+3\left(\mathrm{k}^{2}+\mathrm{k}+1\right)
$$

Then $\frac{(k+1)^{3}+2(k+1)}{3}=\frac{k^{3}+2 k+3\left(k^{2}+k+1\right)}{3}=\frac{k^{3}+2 k^{2}}{3}+k^{2}+k+1$

$$
=\text { integer }+ \text { integer }
$$

From step 2
Then this relation is true for all n .

Dr. Mohamed Eid

Question 3

(a)Transform the equation $x^{2}-6 x y+9 y^{2}+4 x+8 y+15=0$ to new axes through $(-2,1)$

Answer

Put $x=x-2$ and $y=y+1$
$(x-2)^{2}-6(x-2)(y+1)+9(y+1)^{2}+4(x-2)+8(y+1)+15=0$
$x^{2}-6 x y+9 y^{2}-6 x+38 y+57=0$
(b)A point moves so that its distance from the x-axisis half of its distance from the point $(2,3)$. Find the equation of its locus.

Answer

Let the point is $P(x, y)$ its distance from the x-axisis y and its distance from the point
$(2,3)$ is $\sqrt{(x-2)^{2}+(y-3)^{2}}$ the locus described by
$y=\frac{1}{2} \sqrt{(x-2)^{2}+(y-3)^{2}}$
$4 y^{2}=x^{2}-4 x+4+y^{2}-6 x+9$
$3 y^{2}-x^{2}+4 x+6 y-13=0$
(c)Find the value of λ such that the equation $2 x^{2}-3 x y-2 y^{2}-8 x+6 y+\lambda=0$ represent a pair of lines then fined the angle between them.

Answer

$2 x^{2}-3 x y-2 y^{2}-8 x+6 y+\lambda=\left(2 x+y+c_{1}\right)\left(x-2 y+c_{2}\right)=0$
Compare the coefficients in both sides
$c_{1}+2 c_{2}=-8,-2 c_{1}+c_{2}=6, \quad c_{1} c_{2}=\lambda$
Then $\quad c_{1}=-4, \quad c_{2}=-2, \quad c_{1} c_{2}=\lambda=8$
We note that $a+b=0$ the angle between the lines is $\theta=\pi / 2$

Another solution

$2 x^{2}-3 x y-2 y^{2}-8 x+6 y+\lambda=0$
$a=2, h=-3 / 2, b=-2, g=-4, f=3$ and $c=\lambda$
Construct the discriminate
$\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|=\left|\begin{array}{ccc}2 & -3 / 2 & -4 \\ -3 / 2 & -2 & 3 \\ -4 & 3 & \lambda\end{array}\right|=0 \quad$ Which show that $\lambda=8$

We note that $a+b=0$ the angle between the lines is $\theta=\pi / 2$
(d)Find the equation of the ellipse whose foci $(\pm 4,0)$ and its eccentricity is $(1 / 3)$.

Answer

$(\pm 4,0)=(\pm a e, 0)$ then $a e=4$,
since $e=(1 / 3)$ and $\quad a=12$
$b^{2}=a^{2}\left(1-e^{2}\right)=144\left(1-\frac{1}{9}\right)=144\left(\frac{8}{9}\right)=16(8)=128$
The equation is
$\frac{x^{2}}{144}+\frac{y^{2}}{128}=1$

Question (4)

(a)Find the equation of the tangent to the circle $x^{2}+y^{2}=13$ at the point ${ }^{(2,3)}$.

Answer

Equation of the tangent is $x x_{1}+y y_{1}=13$ substitute by $\left(x_{1}, y_{1}\right)=(2,3)$ we get $2 \mathrm{x}+3 \mathrm{y}=13$
(b)Find the equation of the parabola whose Focus is $\mathrm{F}(1,2)$ and directrix is $x+y-2=0$.

Answer

Let the point $P(x, y)$ on the curve then

$$
\begin{aligned}
& (x-1)^{2}+(y-2)^{2}=\left(\frac{x+y-2}{\sqrt{1+1}}\right)^{2} \\
& 2\left(x^{2}+y^{2}-2 x-4 y+5\right)=x^{2}+y^{2}+4+2 x y-4 x-4 y \\
& x^{2}-2 x y+y^{2}+2 y+6=0
\end{aligned}
$$

(c)Find the eccentricities, foci coordinates, directrix for the ellipses $4 x^{2}+9 y^{2}=144$.

Answer

$$
4 x^{2}+9 y^{2}=144
$$

Divide the equation by 144

$$
\begin{aligned}
& \frac{x^{2}}{36}+\frac{y^{2}}{16}=1 \\
& a^{2}=36, b^{2}=16
\end{aligned}
$$

The center at $(0,0)$ and the vertices at $(\pm 6.0),(0, \pm 4)$
Major axis $=2 \mathrm{a}=12$ and minor axis $=2 \mathrm{~b}=8$
$b^{2}=a^{2}\left(1-e^{2}\right)$
$e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{16}{36}}=\sqrt{\frac{20}{36}}=\frac{\sqrt{5}}{3}$
Foci at $(\pm a e, 0)=(\pm 2 \sqrt{5}, 0)$
Equation of the directrix is $x= \pm \frac{a}{e}= \pm \frac{3 \times 6}{\sqrt{5}}= \pm \frac{18}{5} \sqrt{5}$
(d)Find the equation of the tangent to hyperbola $4 x^{2}-9 y^{2}=36$ which parallel to the line $y=2 x+3$.

Answer

$a^{2}=9, b^{2}=4$
The m equation for the tangent is
$y=m x \pm \sqrt{m^{2} a^{2}-b^{2}}$
$y=2 x \pm \sqrt{9 \times 2-4}$
$y=2 x \pm \sqrt{22}$

