Benha University		Final Term Exam	
Faculty of Engineering- Shoubra	*	Date: May 17, 2015	
Eng. Mathematics & Physics Department		Course: Mathematics 1 – B	
Preparatory Year (تخلفات)	Ana UNIVERSY	Duration: 3 hours	
• The Exam consists of one page Answer	All Questions • No	of questions: 4 Total Mark: 10	00
Question 1			
(a) If $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix}$. Show that A`.A is symmetric matrix and find A`.A .			
(b) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$. (i) Find the eigenvalues and eigenvectors of A.			
(ii)Write Hamilton equation and find A^{-1} .			5
(iii)Find the eigenvalues of $f(A) = \sqrt{A^2 + A}$ and $f(A) = 2^A$			
(c) If $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 3\\2 \end{bmatrix}$. Find, if possi	ble, $A + B$, $A.B$, $A.B$ [*] .	5
Question 2			
(a)Using the binomial theorem, expand : $\frac{1}{\sqrt{n+2}}$			
(b) Solve the linear system: $3x + y - z = 2$, $2x - y = 1$, $x + 2y - z = 6$.			5
(c) Find S, S ₂₀ from each series: (i) $\sum_{r=1}^{n} (r+1)(2+r^2)$ (ii) $\sum_{r=1}^{n} \frac{3}{r^2+r}$			8
(d)Using the mathematical induction, prove that:			
(i) $1 + 2 + 3 + \dots + n = \frac{1}{2}n(n + 2)$	1) (ii) n	3 + 2n is divisible by 3	8
Question 3			
(a)Transform the equation $x^2 - 6xy + 9y^2 + 4x + 8y + 15 = 0$ to new axes through (-2, 1).			
(b)A point moves so that its distance from the x – axis is half of its distance from the point (2, 3). Find the equation of its locus			6
(c)Find the value of λ such that the equation $2x^2 - 3xy - 2y^2 - 8x + 6y + \lambda = 0$			6
represents a pair of lines then fined the angle between them. (d)Find the equation of the ellipse whose foci (± 4.0) and its eccentricity is $1/3$			
(d)Find the equation of the empse wi	10se 10c1 (±4,0) al	id its eccentricity is 1/5.	6
Question 4			
(a)Find the equation of the tangent to	the circle $x^2 + v^2$	$^{2} = 13$ at the point (2, 3).	6
(b) Find the equation of the parabola whose Focus is $(1,2)$ and directrix is			6
x + y = 2 - 0			
x + y - 2 = 0.	ates directrix for t	he ellipse $4r^2 + 9v^2 = 144$	6
(d) Find the equation of the tangent to hyperbola $4r^2 - 9v^2 - 36$ which parallels to			
the line $v = 2x + 3$		$y = 50$ which parallels to γ	1
Good Luck	Dr. Mohamed I	id Dr. Fathi Abessalam	

<u>Answer</u>

Question 1

(a) $A^{A} = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 3 & 5 \\ 3 & 9 & 3 \\ 5 & 2 & 5 \end{bmatrix}$. We see that A^{A} . A is symmetric. ----- (5 Marks) (b)(i) $|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda) - 6 = \lambda^2 - 3\lambda - 4 = 0$ Then, the eigenvalues are: $\lambda_1 = 4$, $\lambda_2 = -1$. From the equation, $\begin{bmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$ For: $\lambda_1 = 3$, $\begin{bmatrix} -3 & 2 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$ For: $\lambda_2 = -1$, $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$ Then 2x + 2y = 0, 2x + 2y = 0Then -3x + 2y = 0, 3x - 2y = 0Then 3x = 2y = any number except 0 Then y = -x = any number except 0 Put y = 3, we get x = 2 and the Put x = 1, we get y = -1 and the corresponding eigenvector is: $X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ corresponding eigenvector is: $X_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ ----- (6 Marks) (b)(ii)The Hamilton equation is: $A^2 - 3A - 4I = 0$ Since |A| = -4. Then inverse A exists. Multiply the Hamilton equations by A^{-1} . Then $A - 3I - 4A^{-1} = 0$. Then $A^{-1} = \frac{1}{4}(A - 3I) = \frac{1}{4}\left(\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}\right) = \frac{1}{4}\begin{bmatrix} -2 & 2 \\ 3 & -1 \end{bmatrix}$ ----- (5 Marks) -----(b)(iii)The eigenvalues of $f(A) = \sqrt{A^2 + A}$ are $f(4) = \sqrt{20}$, $f(-1) = \sqrt{0}$. The eigenvalues of $f(A) = 2^A$ are $f(4) = 2^4 = 16$, $f(-1) = 2^{-1} = \frac{1}{2}$. ----- (4 Marks) (c) A + B = $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -2 & 3 \\ 1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 0 & 4 \end{bmatrix}$ A.B does not exist. A.B' = $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ -2 & 0 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} -2 & 3 \\ 8 & 6 \end{bmatrix}$ ----- (5 Marks)

Question 2

(a)
$$\frac{1}{\sqrt{x+9}} = \frac{1}{3} (1 + \frac{x}{9})^{-\frac{1}{2}} = \frac{1}{3} \left(1 - \frac{1}{18}x + \frac{1}{4.27}x^2 + \cdots \right), \quad \left| \frac{x}{9} \right| < 1$$

(b) $G = \begin{bmatrix} 1 & 2 & -1 & | & 6 \\ 3 & 1 & -1 & | & 2 \\ 2 & -1 & 0 & | & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 & | & 6 \\ 0 & -5 & 2 & | & -16 \\ 0 & -5 & 2 & | & -11 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 & | & 6 \\ 0 & -5 & 2 & | & -16 \\ 0 & 0 & 0 & | & 4 \end{bmatrix}$
We see that rank A is 2 but rank G is 3. Then, there is no solution.
(c)(i)Since $u_r = (r+1)(2+r^2) = r^3 + r^2 + 2r + 2$
Then $S_n = \frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1) + 2 \cdot \frac{1}{2}n(n+1) + 2n$
Then $S = \infty$
 $S_{20} = (100)(21)^2 + \frac{1}{6}(20)(21)(41) + (20)(21) + 40 = 47430$
(c)(ii)Since $u_r = \frac{3}{r^2+r} = \frac{3}{r} - \frac{3}{r+1}$. Then $S_n = \frac{3}{1} - \frac{3}{n+1}$.
Then $S = 3$ and $S_{20} = 3 - \frac{3}{21} = \frac{60}{21}$
(d)(i)Prove that: $1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n+1)$

(1)At n = 1, the left hand side (L.H.S) of this relation is 1 and the right hand side (R.H.S) of this relation is 1. Then this relation is true at n = 1.

(2)Assume that this relation is true at n = k.

This means that $1 + 2 + 3 + \dots + k = \frac{1}{2}k(k+1)$

(3)We shall prove that this relation is true at n = k + 1.

Or prove that, $1 + 2 + 3 + \dots + (k + 1) = \frac{1}{2}(k + 1)(k + 2)$

From step 2, add k + 1 to both sides, we get

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{1}{2}k(k + 1) + (k + 1) = \frac{1}{2}(k + 1)(k + 2)$$

Then this relation is true for all n.

------ <u>(4 Marks)</u>

(d)(ii) $n^3 + 2n$ is divisible by 3

We want to prove that $\frac{n^3+2n}{3}$ is integer number.

(1)At n = 1, $\frac{1+2}{3} = 1$ which is integer number. Then this relation is true at n = 1. (2)Assume that this relation is true at n = k. This means that $\frac{k^3+2k}{2}$ integer number.

(3)We shall prove that this relation is true at n = k + 1. Or prove that, $\frac{(k+1)^3 + 2(k+1)}{3}$ is integer number. Since $(k + 1)^3 + 2(k + 1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$ $= k^3 + 2k + 3(k^2 + k + 1)$ Then $\frac{(k+1)^3 + 2(k+1)}{3} = \frac{k^3 + 2k + 3(k^2 + k + 1)}{3} = \frac{k^3 + 2k^2}{3} + k^2 + k + 1$ = integer + integer From step 2 Then this relation is true for all n.

------<u>(4 Marks)</u> Dr. Mohamed Eid

Question 3

(a)Transform the equation $x^2 - 6xy + 9y^2 + 4x + 8y + 15 = 0$ to new axes through (-2,1)

Answer

Put x = x - 2 and y = y + 1 $(x - 2)^2 - 6(x - 2)(y + 1) + 9(y + 1)^2 + 4(x - 2) + 8(y + 1) + 15 = 0$ $x^2 - 6xy + 9y^2 - 6x + 38y + 57 = 0$

(b)A point moves so that its distance from the x – axis is half of its distance from the point

(2,3). Find the equation of its locus.

Answer

Let the point is P(x, y) its distance from the x – axis is y and its distance from the point

(2,3) is
$$\sqrt{(x-2)^2 + (y-3)^2}$$
 the locus described by
 $y = \frac{1}{2}\sqrt{(x-2)^2 + (y-3)^2}$
 $4y^2 = x^2 - 4x + 4 + y^2 - 6x + 9$
 $3y^2 - x^2 + 4x + 6y - 13 = 0$

(c)Find the value of λ such that the equation $2x^2 - 3xy - 2y^2 - 8x + 6y + \lambda = 0$ represent a pair of lines then fined the angle between them.

Answer

$$2x^{2} - 3xy - 2y^{2} - 8x + 6y + \lambda = (2x + y + c_{1})(x - 2y + c_{2}) = 0$$

Compare the coefficients in both sides

 $c_1 + 2c_2 = -8, -2c_1 + c_2 = 6, c_1c_2 = \lambda$

Then $c_1 = -4$, $c_2 = -2$, $c_1 c_2 = \lambda = 8$

We note that a+b=0 the angle between the lines is $\theta = \pi/2$

Another solution

~

$$2x^{2} - 3xy - 2y^{2} - 8x + 6y + \lambda = 0$$

a = 2, h = -3/2, b = -2, g = -4, f = 3 and c = \lambda

Construct the discriminate

$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = \begin{vmatrix} 2 & -3/2 & -4 \\ -3/2 & -2 & 3 \\ -4 & 3 & \lambda \end{vmatrix} = 0 \quad \text{Which show that } \lambda = 8$$

We note that a+b=0 the angle between the lines is $\theta = \pi/2$

(d)Find the equation of the ellipse whose foci $(\pm 4,0)$ and its eccentricity is (1/3).

Answer

 $(\pm 4,0) = (\pm ae,0)$ then ae = 4,

since e = (1/3) and a = 12

$$b^{2} = a^{2}(1 - e^{2}) = 144(1 - \frac{1}{9}) = 144(\frac{8}{9}) = 16(8) = 128$$

The equation is

x^2	y ²	-1
144	128	-1

Question (4)

(a)Find the equation of the tangent to the circle $x^2 + y^2 = 13$ at the point (2,3). <u>Answer</u>

Equation of the tangent is $xx_1 + yy_1 = 13$ substitute by $(x_1, y_1) = (2,3)$ we get 2x+3y=13

(b)Find the equation of the parabola whose Focus is F(1,2) and directrix is x + y - 2 = 0.

Answer

Let the point P(x, y) on the curve then

$$(x-1)^{2} + (y-2)^{2} = \left(\frac{x+y-2}{\sqrt{1+1}}\right)^{2}$$
$$2(x^{2} + y^{2} - 2x - 4y + 5) = x^{2} + y^{2} + 4 + 2xy - 4x - 4y$$
$$\boxed{x^{2} - 2xy + y^{2} + 2y + 6 = 0}$$

(c)Find the eccentricities, foci coordinates, directrix for the ellipses $4x^2 + 9y^2 = 144$.

Answer

$$4x^{2} + 9y^{2} = 144$$

Divide the equation by 144
 $\frac{x^{2}}{36} + \frac{y^{2}}{16} = 1$
 $a^{2} = 36, b^{2} = 16$
The center at (0, 0) and the vertices at (±6.0),(0, ±4)
Major axis =2a=12 and minor axis =2b=8

$$b^{2} = a^{2}(1-e^{2})$$

$$e = \sqrt{1-\frac{b^{2}}{a^{2}}} = \sqrt{1-\frac{16}{36}} = \sqrt{\frac{20}{36}} = \frac{\sqrt{5}}{3}$$
Foci at $(\pm ae, 0) = (\pm 2\sqrt{5}, 0)$
Equation of the directrix is $x = \pm \frac{a}{e} = \pm \frac{3 \times 6}{\sqrt{5}} = \pm \frac{18}{5}\sqrt{5}$
(d)Find the equation of the tangent to hyperbola $4x^{2} - 9y^{2} = 36$ which parallel to the line $y = 2x + 3$.
Answer
 $a^{2} = 9, \ b^{2} = 4$
The m equation for the tangent is $y = mx \pm \sqrt{m^{2}a^{2} - b^{2}}$

$$y = mx \pm \sqrt{m^2 a^2 - b^2}$$
$$y = 2x \pm \sqrt{9 \times 2 - 4}$$
$$y = 2x \pm \sqrt{22}$$

Dr. Fathi Abdsallam